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Resistive Network Model
Suppose that we are given:
» A graph G with n nodes and m edges.

» Currents b; into each node (}; b; =0). b; > 0 at
sources, b; < 0 at sinks and b; = 0 and transmission
nodes.

» Conductances 6; > 0 for all lines {i,j} € G.
Node potentials u determined by linear system of equations:

K(0)u = b

Here, K(0) is the n X n conductance matrix:

K(0) = Z 0i(ei — €))7 (e — ) = AT Diag(h)A

where {¢;} are the standard basis vectors and A is n x m with
columns (e; — €j) corresponding to lines of G.



Power Loss

For connected G and 6 > 0,
u=K'h2 (K+117)b.

Power loss due to resistive heating of the lines:

~

LO) =Y 05(ui — w)* = u"K(0)u = bTK(6)*b

For random b, we obtain the expected power loss:
L(0) = (bTK(0)7*h) = tr(K(0)™* - (bbT)) £ tr(K(0)*B)

It follows from convexity of f(X) = tr(X~!) for X = 0 that
L(#) is convex.



Convex Network Optimization

This leads to the convex optimization problem of sizing lines
(controlling conductances) to minimize power loss subject
budget constraint:

minimize  L(#)
subjectto >0
alo < C

where a, is cost of conductance on line ¢ (proportional to
length of line). Boyd, Ghosh and Saberi formulated this
problem for total resistance (B = 1I).

Alternatively, one may find the most cost-effective network:
mingzo{L(e) + )\aTé’}

where A1 represents the cost of power loss (accrued over
lifetime of network).
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Multi-Generator Example

GAMMA = Inf

A
S




Imposing Sparsity (Non-convex continuation)

In practice, we may also require that the network should by
sparse. We formulate this by adding zero-conductance cost on

lines:
min{L(0) + a’0+bTo(0)}
where ¢(t) =0if 0 =0 and ¢(t) =1if t > 0. Thisis a
difficult combinatorial problem.
We smooth this to a continuous optimization, replacing ¢ by:

t
t)= ——
6:(0) = -
The convex optimization is recovered as v — oo and the
combinatorial one as v — 0. We start with the convex global
minimum, and the “track” the solution as v — 0.



Majorization-Minimization Algorithm

To solve each non-convex subproblem (for fixed 7), we
iteratively linearize the concave penalty function to recover the
convex problem with modified conductance costs.

00+ = arg r;1>iB1{L(0) +[a+bo Ve, (0)] 6}

It monotonically decreases the non-convex objective and

(almost always) converges to a local minimum. Thus our
entire algorithm consists of solving a sequence of convex
network optimization problems.

Similar to method of Candes and Boyd for enhancing sparsity
in compressed sensing.
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Adding Robustness

To impose the requirement that the network design should be
robust to failures of lines or generators, we use the worst-case
power dissipation:

L\k(0) = max L(z00)

ze{0,1}m|1Tz=m—k

It is tractable to compute only for small values of k.

Note, the point-wise maximum over a collection of convex
function is convex.

So the linearized problem is again a convex optimization
problem at every step continuation/MM procedure.
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Conclusion

A promising heuristic approach to design of power distribution
networks. However, cannot gaurantee global optimum.

Future Work:
» Bounding optimality gap?
» Use non-convex continuation approach to place generators
» possibly useful for graph partitioning problems
» adding further constraints (e.g. don’t overload lines)

» extension to (exact) AC power flow?

Thanks!



